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Abstract

This paper suggests a new instrumental variable (IV) estimator for non-linear mod-

els with endogenous covariates. We consider the estimation of the regression coeffi-

cients on the endogenous variables based on the following criterion: If the IVs are

added as auxiliary regressors to the model, then we want their estimated coefficients

to be equal or close to zero. This method is quite intuitive as it formalizes the idea

that the IVs should be excluded variables that do not have any direct explanatory

power for the outcome. Whilst this estimator is not consistent in general, we derive

that it is consistent when the coefficients of the endogenous variables are equal to

zero, and that it is locally sign consistent. This is confirmed by some Monte Carlo

simulations. The usefulness of the estimator is further highlighted in two empirical

examples. The focus of the paper is mainly on the binary choice model, but the

results extend to other non-linear models.

1 Introduction

Instrumental variables (IVs) are an essential tool to estimate causal relationships from

observational data. The underlying idea has been around for nearly a century (going back

to the appendix in Wright 1928), and the “credibility revolution” in empirical economics

has raised attention to IV methods even further in the past few decades (see e.g. Angrist

and Pischke 2010). Accordingly, there is a very large literature on the subject, but the
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majority of both applied and theoretical work focuses on estimating linear regression

models. IV estimation of non-linear models is a challenging problem, and, despite a lot of

work on the subject (see references below), there is still room for new methods and ideas.

The aim of this paper is to estimate non-linear models with endogenous covariates

when appropriate IVs are available. However, to explain our estimation approach in the

simplest possible setting, consider a linear regression model for a scalar outcomes Yi, with

a vector of potentially endogenous covariates Xi, and a vector of instruments Zi, observed

for units i = 1, . . . , n. We are interested in the effect of Xi on Yi, parameterized by the

vector β. There are many ways to construct an IV estimator in a linear model, and,

at least for the case of a limited number of strong instruments, they are all essentially

equivalent (up to some choice of appropriate weight matrix). One of those ways is as

follows: Let γ̂(β) be the ordinary least squares (OLS) estimator obtained by regressing

Zi on the residuals Yi −X ′
i β, and let β̂ be obtained by minimizing the objective function

γ̂ ′(β) Ω γ̂(β). Here, Ω is a symmetric positive definite weight matrix. For example, if we

set Ω =
∑N

i=1 Zi Z
′
i, then, under standard regularity conditions, it is easy to verify that β̂

is equal to the two-stage least squares (2SLS) estimator.1

This procedure of obtaining the 2SLS estimator is quite intuitive: We choose β such

that Zi has no explanatory power for the residuals Yi−X ′
i β, or equivalently, such that the

regression coefficient of Zi on Yi −X ′
i β is (close to) zero. This is one way of formalizing

what is meant by the instrument being an excluded variable.

Depending on the underlying model specification, we might not want to obtain γ̂(β) by

OLS. For example, Chernozhukov and Hansen (2006) apply this estimation approach for

quantile regressions with endogeneity, that is, γ̂(β) is obtained by a quantile regression

(Koenker and Bassett 1978) of Zi on Yi − X ′
i β. Similarly, Lee, Moon and Weidner

(2012) estimate panel regression models with endogeneity and unobserved factors, and

therefore obtain γ̂(β) by a panel regression with unobserved factors (Pesaran 2006; Bai

2009). Those ideas are combined by Harding and Lamarche (2014) who obtain γ̂(β) by a

quantile regression that also controls for unobserved factors.

In all those papers, the relation between Yi and Xi is still linear. In the current paper,

we generalize this estimation approach to models where the relation between Yi and Xi

is non-linear. Our leading example is the binary choice model Yi = 1 {X ′
i β + Ui ≥ 0},

where the distribution of the unobserved error Ui is assumed to be known (e.g. a logit or

1This is a representation of 2SLS as a minimum-distance estimator. Windmeijer (2019) shows that

2SLS can be expressed in a different way as a minimum-distance estimator as well.
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probit model), and Ui is independent of Zi, but may be correlated with Xi.

In this model, if Xi were exogenous, then we would simply use the maximum likelihood

estimator (MLE) to estimate β. For the case of endogenous covariates, it therefore seems

natural to obtain γ̂(β) as the MLE of the model Yi = 1 {X ′
i β + Z ′

i γ + Ui ≥ 0}, where β

is fixed, and the likelihood function is only maximized over γ. The estimator for β is then

obtained by minimizing γ̂ ′(β) Ω γ̂(β), as before. We denote the resulting estimator for β

the Auxiliary IV (AIV) estimator, because the instrument Zi is included as an auxiliary

regressor in the maximum likelihood estimation.

We find this AIV estimator very natural and intuitive, and the goal of this paper is

to show that it has interesting theoretical properties and is useful in practice. However,

the problem of IV estimation of non-linear models is too complicated to expect that the

AIV estimator is a miracle solution that always works well. In particular, under the

model assumptions imposed so far, the AIV will generally not be consistent for the true

parameter value for β (as n → ∞). This is because the estimator γ̂(β) is obtained by

maximizing a misspecified likelihood function: When we write down the likelihood for

the model Yi = 1 {X ′
i β + Z ′

i γ + Ui ≥ 0}, we use the distribution of Ui conditional on Zi,

which is assumed to be known by the model assumptions, but one should really use the

distribution of Ui conditional Xi and Zi. The latter is, however unknown without further

assumptions on the data generating process for the endogenous Xi.

The main reason why we think that the AIV estimator is useful despite being incon-

sistent in general is the following: If β = 0 (or more precisely, if the coefficients on the

endogenous components of Xi are zero), then the AIV estimator is consistent as n → ∞,

and it also typically estimates the sign of β correctly within a neighborhood of β. This

local sign consistency is a very useful property in empirical applications, where it is often a

primary concern whether a coefficient is different from zero, and what the sign of a coeffi-

cient is. Further, the AIV estimator is a plausible estimator for β that can be constructed

without making any assumptions on the data generating process for Xi. The endoge-

nous regressors can be discrete or continuous, and apart from regularity conditions, can

be arbitrarily distributed and arbitrarily correlated with Ui. This should be contrasted

with other simple IV estimators for non-linear models like the control function estimator

(Rivers and Vuong 1988) or the joint MLE that also fully parameterizes the distribution

of Xi. Such distributional assumptions are seldom justified by economic theory, and it is

well known that maximum likelihood estimators of bivariate models can be very sensitive

to misspecification of the error distribution (Little, 1985; Monfardini and Radice, 2008)
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We are therefore confident that the AIV estimator is a useful addition to the toolbox

of applied researchers, which should be reported alongside other estimation approaches

that have complementary properties, as illustrated by the empirical applications in this

paper.

As already mentioned above, there is a large existing literature on IV estimation

in both linear and non-linear models. General non-parametric identification results are

discussed, for example, in Imbens and Newey (2009), Chesher (2010), and Chesher and

Rosen (2017).

Newey (1986) presents a weighted IV estimator for continuous endogenous regressors

that requires estimation of the density of the exogenous regressors and instruments, and

assumes linearity of the first-stage equation. Yildiz (2013) proposes a matching estimator

that is
√
n-consistent for the coefficient of the single binary endogenous variable under

non-parametric restrictions on the distribution of the unobservables, but relies on para-

metric specification of the functional form for the first-stage equation (e.g. a linear index

specification). Han and Lee (2019) consider estimation of generalized bivariate probit

models under a parametric copula assumption for the errors. The validity of their pro-

posed procedure does not rely on knowledge of the marginal distribution of the errors

in the structural and first-stage equations, but requires a parametric specification of the

functional form of the first-stage equation.2 Our proposed estimator assumes knowledge of

the distribution of the error in the structural equation but does not impose any functional

form or distributional assumption on the first-stage equation. As a result, our proposed

estimator has complementary properties to those mentioned above.

Abrevaya, Hausman and Khan (2010) provide a consistent test for the relevance and

sign of the endogenous regressor under no parametric assumptions on the distribution of

the errors. Their test is based on a version of Kendall’s τ -statistic that uses fitted values

from the first-stage equation. Unlike Abrevaya, Hausman and Khan (2010), the validity

of the test of regressor relevance based on the AIV estimator does not rely on parametric

assumptions on the functional form of the first-stage.

Mu and Zhang (2018) propose an estimator for triangular binary choice models with

a binary endogenous regressor based on maximum score Manski (1985). Their proposal

relies on the existence of continuous exogenous regressors with large support, in the spirit

of Lewbel (2000). Their procedure does not require parametric specification of the dis-

2Han and Lee (2019) also discuss identification in bivariate probit models in the absence of excluded

instruments. See also Mourifié and Méango (2014) and Han and Vytlacil (2017).
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tribution of unobservables or the endogenous regressor, but leads to rates of convergence

that can be considerably slower than
√
n.

Bhattacharya, Shaikh and Vytlacil (2012) show 2SLS with a binary outcome and

binary endogenous regressor correctly estimates the sign of the average treatment ef-

fect. This property of 2SLS however is not guaranteed in the presence of additional

exogenous covariates. Our simulations suggest that, unlike 2SLS, the AIV estimator’s

sign-consistency property is robust to the inclusion of additional regressors.

Our results for the AIV estimator of consistency at β = 0 and the local sign consistency

generalise the results in the epidemiology literature of Dai and Zhang (2015), who show

this result for the logit model with a continuous endogenous regressor when it is replaced

by its first-stage linear IV prediction.

In the following, we first introduce the model assumptions and AIV estimator in

Section 2, for the case where the only unknown parameters are the slope coefficients in a

single index. The large sample properties of the estimator are then studied in Section 3.

Generalizations to models with additional parameters are discussed in Section 4. Monte

Carlo results and empirical applications are presented in Section 5 and 6 respectively.

Finally, Section 7 concludes.

2 Model and Auxiliary IV estimator

2.1 Model

For each unit i = 1, . . . , n we observe a scalar outcome Yi ∈ Y , a vector of covariates Xi,

and a vector of instrumental variables Zi. In practice, often only a subset of the covariates

are considered to be endogenous, in which case the exogenous covariates are included in Zi.

We denote the dimension of Xi and Zi by kx ∈ {1, 2, . . .} and kz ∈ {1, 2, . . .}, respectively.

Assumption 1 (Model).

(i) The outcomes Yi are generated from the latent variable model

Yi = g(ω0,i, Ui), ω0,i := X ′
i β0,

where Ui ∈ R are unobserved random variables, the function g(·, ·) is known, and β0

are vectors of unknown parameters.
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(ii) The distribution of Ui is independent of Zi, and Ui has known cumulative distribution

function FU(·).

(iii) (Xi, Zi, Ui) are independent and identically distributed across i = 1, . . . , n.

For example, for a binary choice model the function g(·, ·) in Assumption 1(i) is given

by g(ω, u) = 1 {ω + u ≥ 0} and we have

Yi = 1 {X ′
i β0 + Ui ≥ 0} .

In particular, for a binary choice probit model we choose the distribution of Ui to be

standard normal, or FU(·) = Φ(·) in Assumption 1(ii), with Φ(·) denoting the standard

normal cdf. Notice that Assumption 1(ii) imposes independence between the unobserved

error Ui and the instrument Zi, but the covariate Xi may be correlated with Ui. Finally,

Assumption 1(iii) imposes cross-sectional sampling.

The binary choice probit model is our leading example that will be used through-

out most of the paper. However, Assumption 1 also covers, amongst others, a Poisson

model. Section 4 discusses more general models where Yi = g(ω0,i, Ui) is replaced by

Yi = g(ω0,i,Wi, Ui, α0), with additional unknown parameters α0 and additional exoge-

nous covariates Wi. That extension is important to cover models that feature additional

unknown parameters beyond the regression coefficients β0, for example, Tobit models,

ordered choice models, or multinomial choice models. However, to present our main idea

and results as clearly as possible we find it convenient to focus on the simpler model

structure in Assumption 1 first, which covers the binary choice model as our leading

example.

For the model described by Assumption 1, let ℓ
(
y
∣∣ω) denote the log-likelihood of

observing Yi = y conditional on ω0,i = ω ∈ R, treating Ui and ω0,i as independent. For

discrete Yi we have

ℓ
(
y
∣∣ω) = log Pr {y = g(ω, Ui)} ,

where the probability is evaluated according to the cdf FU(·). For all our theoretical

results below we will assume that the log-likelihood is strictly concave and continuously

differentiable in ω. This is, of course, satisifed for the binary choice probit model where

ℓ
(
y
∣∣ω) = y log Φ(ω) + (1− y) log[1− Φ(ω)].
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2.2 AIV estimator

If Assumption 1 holds with Zi = Xi, then Xi is exogenous and the most natural estimator

for β in the model described above is given by the maximum likelihood estimator (MLE)

β̂MLE = argmax
β

n∑
i=1

ℓ
(
Yi

∣∣X ′
iβ
)
.

However, if Zi ̸= Xi and (some of) the covariates Xi are endogenous, then β̂MLE is

generally not a good estimator anymore. Some estimation strategy that makes use of the

instrumental variables Zi is required in that case. The auxiliary IV estimator β̂AIV that

we propose is defined by

γ̂(β) = argmax
γ∈C

n∑
i=1

ℓ
(
Yi

∣∣X ′
iβ + Z ′

iγ
)
,

β̂AIV ∈ argmin
β∈B

∥γ̂(β)∥Ωn,β
, (1)

where C ⊂ Rkz and B ⊂ Rkx are compact sets, and ∥γ∥2Ω = γ′ Ω γ is a quadratic distance

measure for vectors γ ∈ Rkz , parameterized by a positive definite kz × kz weight matrix

Ω = Ωn,β, which might be stochastic and might depend on β. If we choose Ω equal to

the identity matrix, then ∥·∥Ω is simply the Euclidean norm. But having the flexibility to

choose more general Ω is useful, for example, by choosing Ω = 1
n

∑
i ZiZ

′
i the estimator

β̂AIV remains unchanged under the transformation Zi 7→ Zi A, for any invertible kz × kz

matrix A.

We introduce the compact sets C and B for technical reasons. In our practical im-

plementation we assume that the boundedness conditions imposed through C and B are

non-binding, that is, in practice we implement β̂AIV with C = Rkz and and B = Rkx .

For the special case of all regressors known to be exogenous, Zi = Xi, we have γ̂(β) =

β̂MLE−β, and therefore β̂AIV = β̂MLE. Also, for the linear regression model, Yi = X ′
i β0+Ui,

with normal errors Ui ∼ N (0, σ2
0) and Ω = 1

n

∑
i ZiZ

′
i one can easily show that β̂AIV =

β̂2SLS, as long as the boundedness conditions imposed through C and B are non-binding.

The idea underlying the IV estimator β̂AIV is as follows. We include the instruments

Zi as auxiliary regressors in the model and for fixed β we maximize the corresponding

log-likelihood ℓ
(
Yi

∣∣X ′
iβ + Z ′

iγ
)
only over the parameters γ that correspond to the exoge-

nous variables Zi. Intuitively, the instruments Zi should be excluded variables and their

coefficient estimates γ̂(β) are therefore expected to be close to zero whenever β is close

6



to the true value β0. Following that intuition we therefore obtain β̂AIV by minimizing the

distance between γ̂(β) and zero.

The idea of using instrumental variables as auxiliary regressors and then minimizing

their coefficients to find the parameters of interest has previously been used in other

contexts. In a quantile regression setting, this method was proposed by Chernozhukov

and Hansen (2006). To deal with endogeneity in panel regressions with interactive fixed

effects and for the purpose of demand estimation the method was used in Lee, Moon and

Weidner (2012) and Moon, Shum and Weidner (2018). However, none of those existing

papers consider the type of non-linear models with endogeneity that are the focus here.

The IV estimator in (1) and our theoretical results below are novel in that context.

An interesting alternative characterization of the objective function ∥γ̂(β)∥Ωn,β
for

β̂AIV is provided by the following lemma.

Lemma 1. Let β ∈ Rkx. Let Wn,β ∈ Rkz×kz be symmetric and positive definite. Assume

that the log-likelihood ℓ
(
y
∣∣ω) is strictly concave and twice continuously differentiable in

ω ∈ R, and that the maximizer γ̂(β) in (1) is well-defined. Define the kz × kz matrix3

Hn(β, γ) :=
1

n

n∑
i=1

∂2ℓ
(
Yi

∣∣X ′
iβ + Z ′

iγ
)

∂ω2
Zi Z

′
i.

Then, there exists γ∗(β) ∈ Rkz such that for

Ωn,β = Hn(β, γ∗(β)) Wn,β Hn(β, γ∗(β)) (2)

we have

∥γ̂(β)∥Ωn,β
=

∥∥∥∥∥ 1n
n∑

i=1

∂ℓ
(
Yi

∣∣X ′
iβ
)

∂ω
Zi

∥∥∥∥∥
Wn,β

.

The lemma provides an alternative characterization for the objective function ∥γ̂(β)∥Ωn,β

that is used to define our IV estimator β̂AIV in (1). For matrices Ωn,β and Wn,β satisfying

the relation (2), we can use the lemma to express β̂AIV as

β̂AIV ∈ argmin
β∈B

∥∥∥∥∥ 1n
n∑

i=1

∂ℓ
(
Yi

∣∣X ′
iβ
)

∂ω
Zi

∥∥∥∥∥
Wn,β

. (3)

3We use the following notation

∂qℓ
(
Yi

∣∣ ai)
∂ωq

:=
∂qℓ

(
Yi

∣∣ω)
∂ωq

∣∣∣∣∣
ω=ai

.
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The researcher could choose the weight matrix Wn,β (e.g. a fixed matrix independent

of β) and use (3) to compute β̂AIV. In that case, (1) provides an alternative char-

acterization of the same β̂AIV as long as (2) holds. Or the researcher could choose

the weight matrix Ωβ (e.g. a fixed matrix independent of β). Then, if Hn(β, γ∗(β))

is invertible, (3) provides an alternative characterization of the same β̂AIV as long as

Wn,β = [Hn(β, γ∗(β))]
−1 Ωn,β [Hn(β, γ∗(β))]

−1.

Furthermore, for the exactly identified case, kz = kx, if a solution β̂AIV of the method

of moment equations

n∑
i=1

∂ℓ
(
Yi

∣∣∣X ′
i β̂AIV

)
∂ω

Zi = 0 (4)

exists, then that solution also solves (3). Our assumptions in Section 3 guarantee existence

of a solution to (4) for kz = kx in large samples. Notice that (4) generalizes the first order

condition of the MLE by replacing Xi with Zi. While (4) is conveniently simple, we prefer

the more general characterizations (1) and (3) of the estimator since they are applicable

to the overidentified case, kz > kx, as well.

For both (1) and (3), the objective function for the minimization over β may not be

convex. For computation we refer to Section 4. There we show that if only a single regres-

sor is endogenous, then the “outer loop” optimization over β in (1) can be transformed

into a one-dimensional problem (for which a grid search is computationally feasible), while

the “inner loop” optimization over γ in (1) always remains a convex problem as long as

the log-likelihood is concave.

3 Asymptotic results for the IV estimator

We have argued in the last section that the AIV estimator is a quite intuitive and plausible

estimator to consider. However, IV estimation in non-linear models is a challenging

problem and our relatively simple estimator β̂AIV does not miraculously fully solve this.

Indeed, under the assumptions imposed so far, the IV estimator β̂AIV is not consistent

for β0 in general. Nevertheless, we believe that the estimator β̂AIV is a useful element

in the toolbox of nonlinear IV estimation, and the purpose of the current section is to

demonstrate this by deriving some asymptotic properties of β̂AIV. To show consistency

and asymptotic normality of β̂AIV we impose the following additional assumption.

Assumption 2 (Exogeneity of X ′
i β0). Ui is independent of (X

′
iβ0, Zi).
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Assumption 2 is satisfied if for every k = 1, . . . , kx we either have β0,k = 0 or Xi,k is

exogenous. Thus, endogenous regressors are allowed for here, as long as the corresponding

coefficient is zero. Indeed, we are particularly interested in cases where some of the

covariates Xi,k are endogenous and the corresponding coefficients β0,k are close to zero,

but the researcher may not know that the coefficients are close to zero. Those are the cases

where the estimator β̂AIV will be most useful, either to formally test the null hypothesis

H0 : β0,k = 0, or to simply report and interpret β̂AIV in a table with multiple other

estimators that have complementary properties.

In subsections 3.1 we derive consistency and asymptotic normality of β̂AIV under As-

sumption 2. In subsection 3.2 we do not impose Assumption 2 strictly, but instead show

that for endogenous Xi,k we obtain local sign consistency for β̂AIV,k in a neighborhood

around β0,k = 0.

3.1 Consistency and asymptotic normality

In addition to the Assumptions 1 and 2 imposed so far, we also require some more technical

regularity conditions. For this purpose we introduce the matrices

Gn(β, γ) :=
1

n

n∑
i=1

ZiX
′
i

∂2ℓ
(
Yi

∣∣X ′
iβ + Z ′

iγ
)

∂ω2
, Hn(β, γ) :=

1

n

n∑
i=1

ZiZ
′
i

∂2ℓ
(
Yi

∣∣X ′
iβ + Z ′

iγ
)

∂ω2
,

G(β, γ) := E

[
ZiX

′
i

∂2ℓ
(
Yi

∣∣X ′
iβ + Z ′

iγ
)

∂ω2

]
, H(β, γ) := E

[
ZiZ

′
i

∂2ℓ
(
Yi

∣∣X ′
iβ + Z ′

iγ
)

∂ω2

]
,

(5)

and the score function for γ:

Sn(β, γ) =
1

n

n∑
i=1

Zi
∂ℓ (Yi | X ′

iβ + Z ′
iγ)

∂ω
. (6)

Assumption 3 (Regularity conditions).

(i) The parameter sets B and C are compact. B contains β0 as an interior point. C
contains 0 as an interior point.

(ii) For all possible outcomes y, the log-likelihood function ℓ
(
y
∣∣ω) is strictly concave

in ω ∈ R. Furthermore, ℓ
(
Yi

∣∣X ′
iβ + Z ′

iγ
)
is three times continuously differentiable

in (β, γ) with derivatives that in expectation are bounded for all (β, γ) ∈ (B, C).
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(iii) sup
β∈B

sup
γ∈C

∥Gn(β, γ)−G(β, γ)∥ = oP (1), sup
β∈B

sup
γ∈C

∥Hn(β, γ)−H(β, γ)∥ = oP (1).

(iv) For all (β, γ) ∈ (B, C), H(β, γ) has full rank kz and G(β, 0) has full rank kx.

(v) The symmetric matrix Ωn,β is a twice continuously differentiable function in β, and

there exists a constant c > 0 such that with probability approaching one we have

Ωn,β ≥ c for all β ∈ B. Furthermore, supβ∈B ∥Ωn,β − Ωβ∥ = op(1) for some non-

random symmetric matrix Ωβ which is positive-definite for all β ∈ B.

Before we discuss these assumptions we first state our main consistency theorem.

Theorem 1. Let Assumption 1, 2, 3 hold. Then we have β̂AIV = β0 + oP (1), as n → ∞.

Assumptions 3(i) is a standard technical regularity condition that demands the pa-

rameter sets to be compact while also containing the true parameter values – notice that

0 is the “true value” for γ. Assumption 3(ii) demands the log-likelihood to be strictly

concave and sufficiently smooth. Assumption 3(iii) is a uniform convergence requirement

for the second derivatives of the sample likelihood function. Classic primitive conditions

for uniform convergence through dominance conditions are satisfied under the smooth-

ness assumptions in Assumption 3(ii) whenever E [∥Z ′
iXi∥] < ∞ and E [∥Z ′

iZi∥] < ∞.

Assumption 3(v) is a standard regularity condition on the weight matrix Ωn,β.

In Assumption 3(iv), the condition on H(β, 0) is a generalized non-collinearity con-

dition on the instruments Zi, while the condition on G(β, 0) is a generalized relevance

condition on the instruments — if the definition of H and G in (5) would not contain

∂2ℓ/∂ω2, then these would be the standard non-collinearity and relevance conditions. If

one only wanted to show local consistency for B being a small neighborhood around β0,

then it would be sufficient to impose Assumption 3(iv) at β0 only.

Theorem 2. Suppose that Assumptions 1, 2, and 3 hold. Furthermore, assume that
√
nSn(β0, 0)

d→ N (0,Σ) with Σ := Var

[
Zi

∂ℓ(Yi |X′
iβ)

∂ω

]
. Then,

√
n (β̂AIV − β0)

d→ N
(
0, (G′ W G)−1G′W ΣW G (G′W G)−1

)
,

where G := G(β0, 0) and W := H−1ΩH−1, with Ω = Ωβ0 and H := H(β0, 0).

Asymptotic normality of the score Sn(β0, 0) can be shown using the Lindeberg-Lévy

central limit theorem under the moment bound E [∥Z ′
iZi∥] < ∞. Apart from that, the

assumptions of Theorem 2 are identical to those of Theorem 1. From the asymptotic
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Figure 1: Probability limit of β̂AIV as a function of β0.

variance formula of the AIV estimator one can deduce the optimal weighting matrix

Ω∗ = HΣ−1H under which AVar(
√
n β̂AIV) = (G′Σ−1G)−1. While continuously-updating

or feasible two-step procedures would be asymptotically efficient, we find that they bring

negligible gains in our simulations compared to the simple choice Ωn,β = 1
n

∑n
i=1 ZiZ

′
i,

which is the one we recommend.

3.2 Local sign consistency

In this section we consider the case where all regressors are exogenous, except for a

single endogenous regressor Xi,k. We are interested in how the probability limit of the

corresponding component β̂AIV,k of our AIV estimator depends on the corresponding true

parameter value β0,k. The red line in Figure 1 plots this relationship for one particular

data generating process (DGP) that we also employ in our Monte Carlo simulations (the

binary choice probit model with a continuous endogenous regressor of Table 1).4 The

details of this DGP do not matter here. What we are interested in are a couple of

qualitative features of Figure 1 that are valid more generally:

4In that DGP both the variance of the endogenous regressor Xi,k and of the error term Ui are equal

to one.
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(i) If the true value β0,k of the regression coefficient corresponding to the single endoge-

nous regressor is equal to zero, then plim β̂AIV,k is also equal to zero. We already

know that this is true for all data generating processes that satisfy the conditions in

Theorem 1.

(ii) According to Theorem 1, if the covariate Xi,k is treated as endogenous and in-

strumented for, but is actually exogenous in the data-generating process (i.e. Xi is

independent of Ui), then we have plim β̂AIV,k = β0,k, corresponding to the 45-degree

line drawn in grey in Figure 1. Therefore, if the degree of endogeneity is small (rela-

tive to the strengths of the instrument), then we would expect only a small deviation

from the 45-degree line. Conversely, if the degree of endogeneity is large, then we

generally expect larger deviations from the 45-degree line.

(iii) In Figure 1 the sign of plim β̂AIV,k is always equal to the sign of β0,k. If this property

holds, then we say that β̂AIV is “globally sign consistent”. In our simulations in

Section 5 we always find global sign consistency for all DGPs that we explore, but we

are not able to provide formal conditions under which global sign consistency holds

in this paper (apart from exogeneity of Xi,k). Instead, in the following we want to

discuss “local sign consistency”, that is, sign consistency in a small neighborhood of

β0,k = 0.

(iv) Local sign consistency of the AIV estimator leads to a test of the null hypothesis

H0 : β0,k = 0 that is consistent for alternatives in a neighborhood of H0. Global

sign consistency leads to general consistency of the same test. This is particularly

useful in applications where a main concern is whether the effect of an endogenous

“treatment” variable is zero.

Let β∗(β0) be the large n probability limit of β̂AIV. We say that the k’th component

of the AIV estimator is locally sign consistent if there exists δ > 0 such that

sign (β∗,k(β0)) = sign (β0,k) ,

for all β0 with |β0,k| < δ. Under appropriate smoothness conditions, a sufficient condition

for local sign consistency of β̂AIV,k is given by

∂β∗,k(β0)

∂β0,k

∣∣∣∣
β0,k=0

> 0. (7)
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In the following we give two concrete examples where (7) holds. Notice, however, that

(7) is not a necessary condition for local sign consistency of β̂AIV,k, because one could,

for example, have
∂β∗,k(β0)

∂β0,k
= 0, at β0,k = 0, and still achieve local sign consistency via

∂2β∗,k(β0)

∂2β0,k
= 0 and

∂3β∗,k(β0)

∂3β0,k
> 0, at β0,k = 0.

Example 1 ( Probit control function model). Consider the generalized probit control

function model:

Yi = 1(X ′
iβ0 − Ui > 0),

xi = g(Zi, Vi), Xi = (1, xi),

(Ui, Vi)
∣∣Zi ∼ (Ui, Vi) ∼ FU,V , Ui ∼ N (0, 1),

(8)

where xi, Ui, Vi are all scalar random variables, Zi is a vector of instruments that includes

a constant, g is strictly monotone in Vi, and FU,V is absolutely continuous with density

fU,V . This model is more general than the one studied in Rivers and Vuong (1988) in

that it does not require the conditional distribution Ui

∣∣Vi to be linear in Vi nor normal;

the first-stage is allowed to be non-separable and non-linear in (Zi, Vi), as in Imbens and

Newey (2009) . In this example, the regressor Xi,k for k = 2 is endogenous, and one can

show (see Appendix) that
∂β∗,2(β0)

∂β0,2

∣∣∣∣
β0,2=0

= 1,

therefore local sign consistency holds.

Example 2 (Generalized bivariate probit IV). Consider the bivariate probit IV model:

Yi = 1(X ′
iβ0 + Ui > 0),

xi = 1(m(Zi) + Vi > 0) Xi = (1, xi), Zi = (1, zi),

(Ui, Vi)
∣∣Zi ∼ (Ui, Vi) ∼ FU,V , Ui ∼ N (0, 1),

(9)

where xi, zi, Ui, Vi are all scalar random variables, and m(Zi) is assumed to be a monotonic

function of zi. This model nests the popular bivariate probit model which further assumes

joint normality of (Ui, Vi) and linearity of m(Zi). Again, the regressor Xi,k for k = 2 is

endogenous, and we show in the Appendix that (7) holds for k = 2, that is, local sign

consistency holds in this example as well. Unlike Example 1, the arguments we use to

show local sign consistency in this model do not directly generalize to the over-identified

case (kz > 2).
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We know that local sign consistency of the AIV estimator holds whenever all the

regressors are exogenous. In addition, the above examples provide two concrete data

generating processses where a single regressor is endogenous and local sign consistency

still holds. We have also verified local sign consistency (in fact, global sign consistency)

numerically for all the data generating processes in our Monte Carlo simulations. We

therefore conclude that local sign consistency of the AIV estimator holds for a large class

of data generating processes.

As mentioned above, an important implication of the local sign consistency prop-

erty is that a t-test for the hypothesis H0 : β0,k = 0 based on our estimator has non-

trivial power — and it is in fact consistent — in a neighbourhood of the null hypothesis.

The distribution of this t-test under H0 is guaranteed by Theorem 2. For implemen-

tion, one just needs to compute the sample analog ÂVar(
√
nβAIV) of the asymptotic

variance-covariance matrix (G′ W G)−1G′ W ΣW G (G′ W G)−1 given in the theorem, and

n(β̂AIV,k)
2/[ÂVar(

√
nβAIV)]kk will be χ2(1) distributes as n → ∞.

4 Generalization and implementation

We now want to discuss a generalization of the model and AIV estimator described in

Section 2.1. Specifically, we now assume that in addition to (Yi, Xi, Zi), i = 1, . . . , n, we

also observe the additional strictly exogenous covariate Wi. The difference between Xi

and Wi is that Wi need not enter the model through the linear single index ωi = X ′
iβ.

Similarly, in addition to the unknown parameters β we now allow for the additional

unknown parameters α, which also need not enter the model through the single index

ωi. Examples where this generalization is important are ordered choice models, Tobit

models, and negative binomial models. The appropriate generalization of Assumption 1

is as follows:

Assumption 4 (Generalized Model).

(i) The outcomes Yi are generated from the latent variable model

Yi = g(ω0,i,Wi, Ui, α0), ωi,0 := X ′
i β0,

where Ui ∈ R are unobserved random variables, the function g(·, ·, ·, ·) is known, and
α0 and β0 are vectors of unknown parameters.
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(ii) The distribution of Ui is independent of (Zi,Wi), and Ui has known cdf FU(·).

(iii) (Xi, Zi,Wi, Ui) are independent and identically distributed across i = 1, . . . , n.

Let ℓ
(
Yi

∣∣Wi, ωi, α
)
be the log-likelihood of Yi conditional on Wi, ω0,i = ωi and

α0 = α. Then, the generalization of the AIV estimator in (1) is given by(
γ̂(β), α̂(β)

)
= argmax

γ∈C,α∈A

n∑
i=1

ℓ
(
Yi

∣∣Wi, X
′
iβ + Z ′

iγ, α
)
, β̂AIV ∈ argmin

β∈B
∥γ̂(β)∥Ωn,β

,

α̂†(β) = argmax
α∈A

n∑
i=1

ℓ
(
Yi

∣∣Wi, X
′
iβ, α

)
, α̂AIV = α̂†(β̂AIV, 0), (10)

where B and C are compact parameter sets as before and A is a compact parameter set

for α. Compactness of the parameter sets is again a very helpful technical regularity

condition to derive asymptotic results. However, for practical implementation we again

assume that the boundedness imposed by B, C and A is not binding, that is, in practice

we replace B by Rkx , C by Rkz and A by Rkα , where kα denotes the dimension of α.

The appropriate generalizations of our consistency result of Theorem 1 for the AIV

estimator in Section 3.1 to the model and estimator in Assumption 4 and display (10) are

provided in the appendix.

In our Monte Carlo simulations and empirical applications below we focus on the bi-

nary choice model for which this extension of the model discussed here is not actually

required. However, even for the binary choice model there can be computational advan-

tages in implementing the AIV estimator according to (10) instead of (1). This is because

we can move all the regression coefficients that correspond to exogenous covariates from

β to α and then implement (10) instead of (1). The advantage of that implementation

is that the inner-loop optimization over (γ, α) in (10) is a convex optimization problem

(since we assume the log-likelihood to be a concave function) while the outer-loop opti-

mization over β is in general a non-convex problem, implying that we want the dimension

of the vector β to be as small as possible for computational reasons.

This computational issue is important in practice and we therefore want to be ex-

plicit about it. Consider the setup of our original Assumption 1 and decompose Xi =

(Xend ′
i , Xex ′

i )′ and Zi = (Zex ′
i , Xex ′

i ), where Xend
i are the endogenous regressors, Xex

i are

the exogenous regressors, and Zex
i are the excluded instruments. In most applications we

expect Xend
i to be low-dimensional (often just a single variable). Let βend and βex be the

regression coefficients corresponding to Xend
i and Xex

i . By applying the generalized AIV
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estimator in (10) to this setup with (Xi,Wi, Zi, β, α) equal to (Xend
i , Xex

i , Zex
i , βend, βex)

we obtain(
γ̂(βend), β

ex
(βend)

)
= argmax

(γ, βex)

n∑
i=1

ℓ
(
Yi

∣∣Xend ′
i βend +Xex ′

i βex + Zex ′
i γ

)
,

β̂end ∈ argmin
βend

∥∥γ̂(βend)
∥∥
Ωend

n,β

,

β̂ex = argmax
βex

n∑
i=1

ℓ
(
Yi

∣∣Xend ′
i β̂end +Xex ′

i βex
)
, (11)

where Ωend
n,β now is a positive definite matrix of dimension dim(Xend

i )× dim(Xend
i ) only.

Again, the key observation here is that the optimization over (γ, βex) is a convex

optimization problem, while the optimization over βend is non-convex but usually low-

dimensional (often just one-dimensional which can e.g. be implemented by an initial grid-

search followed by, for example, a golden-section search). Implementing the AIV estimator

via (11) is therefore often computationally preferable to (1) and to (3), in particular, if

kx is large. Our results in the Appendix show that the two implementations are asymp-

totically equivalent when kz = kx. When kz > kx, then the choice of implementation

and weight matrix matters for the (asymptotic) distribution of the resulting estimator,

see the Appendix for more details.5 In practice, we again recommend the simple choice

Ωend
n,β = 1

n

∑n
i=1 Z

ex
i Zex ′

i .

5 Monte Carlo simulations

We consider the following data generating process (DGP):

Yi = 1 {β1 +X2,iβ2 +X3,iβ3 + Ui ≥ 0} , Ui ∼ N (0, 1),

X2,i = σ−1
X2

(Zi + Vi) , Zi ∼ (χ2(k)− k)/
√
2k, k = 10, X3,i = σ−1

X3

(
N (0, 1) + 0.5 · Z2

i

)
Vi = εi + δend · (Ui + δno norm · (2 · 1 {Ui ≥ 0}+ U2

i − 2)), εi ∼ N (0, 1),

with normalizing constants σX2 and σX3 chosen so that Var(X2,i) = Var(X3,i) = 1.

5When kz > kx, the asymptotic distribution for β̂end is equivalent under the two implementations if

Ω =

[
Ωend 0

0 Ωex

]
and Σγα := E

[
ZiX

′
i

∂2ℓ
(
Yi

∣∣Xend ′
i βend

0 +Xex ′
i βex

0

)
∂ω2

]
= 0.

Beyond this set of special conditions, the two implementations do not in general lead to asymptotically

equivalent estimators under over-identification.
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We set β1 = 1, β3 = −1 and we document the performance of different procedures in

the estimation of β2 under different configurations of β2, δend and δno norm. We also report

the empirical size of a two-sided t-test for the null hypothesis that β2 is equal to its true

value.

The AIV estimator is implemented as in (11), with outer-loop direct search over β2

initialized at the control function estimate. Standard errors used in the t-test are based

on the sample analogue of the asymptotic variance formula in Theorem 2.

For the control function estimator, the test statistic is based on the standard error

formula provided in Rivers and Vuong (1988), which assumes correct specification of the

model (including joint normality).6

The results are collected in Table 1. As expected, MLE is severely biased under en-

dogeneity of the regressor and non-normality of the errors, leading to confidence intervals

with no coverage. As predicted by theory, the control function estimator is consistent

and provides accurate inference under joint normality of the errors, or in the absence of

endogeneity. However, the coverage of its associated confidence intervals is null in the

presence of endogeneity and lack of joint normality, due to large biases. The AIV estima-

tor instead enjoys negligible bias under all configurations considered, at the cost of mild

variance increases compared to the control function approach. Remarkably, the resulting

rejection probabilities for a two-sided t-test are close to nominal size, including for values

of β2 away from 0. Figure 2 reports the power function of a two-sided t-test of regressor

relevance (H0 : β2 = 0) based on the AIV estimator under δend = 1 and δno norm = 2.

The sign-consistency property of the AIV estimator results in good power for this test,

even though the presence of bias in the estimator for values of β2 away from 0 leads to

non-monotonic power in this DGP.

6Notice that the asymptotic variance formula contained in Rivers and Vuong (1988) is for a different

normalization of the variance of Ui compared to MLE, bivariate Probit and the AIV estimators, which all

assume Var(Ui) = 1. In order to make the control function estimates comparable with the other methods,

we rescale the original control function estimates based on the normalization of Rivers and Vuong (1988)

and appropriately adjust standard errors via the Delta method.
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5.1 Simulations with binary endogenous regressor

We consider a modification of the previous DGP which now features a binary endogenous

regressor:

Yi = 1 {β1 +X2,iβ2 +X3,iβ3 + Ui ≥ 0} , Ui ∼ N (0, 1),

X2,i =
{
σ−1
X2

(Zi + Vi) ≥ 0
}
, Zi ∼ (χ2(k)− k)/

√
2k, k = 10, X3,i = σ−1

X3

(
N (0, 1) + 0.5 · Z2

i

)
Vi = εi + δend · (Ui + δno norm · (2 · 1 {Ui ≥ 0}+ U2

i − 2)), εi ∼ N (0, 1).

where σX2 , σX3 , β3 are as before, and we set β1 = 0.4 to ensure E[Yi] ≈ 0.5.

The results are given in Table 2. Surprisingly, the control function estimator has

negligible bias under endogeneity and non-normality.7 However, the associated rejection

probabilities for the control function estimator are far from nominal size due to severe

underestimation of the standard errors. As expected, the bivariate probit estimator per-

forms well under joint-normality of the errors or exogeneity of the regressors. Under

endogeneity and non-normality, the bivariate probit estimator suffers from large bias and

considerable size distortions of its associated tests. On the other hand, the AIV estima-

tor has negligible bias, resulting in good size control and high power of the associated

two-sided test of regressor relevance, as shown in Figure 3. It is interesting to notice that

2SLS is not sign-consistent for the effect of the endogenous treatment in this DGP, whilst

it is known to be sign-consistent in the absence of additional covariates (Bhattacharya,

Shaikh and Vytlacil, 2012). The AIV estimator enjoys sign-consistency in this DGP, sug-

gesting improved robustness of the sign-consistency property to the inclusion of additional

covariates compared to 2SLS.

6 Empirical applications

In this section we present two empirical applications. In each application we compare

estimates of the coefficient on the the binary endogenous regressor of interest based on

popular existing estimators and the AIV estimator. In the first application, a test of

relevance of the endogenous regressor based on the AIV estimator cautions the researcher

about the conclusion that having health insurance increases the probability that an in-

dividual visits a doctor in a given year. In the second application, the AIV estimator

7We have verified that this small bias property exhibited by the control function estimator in this

DGP is coincidental, and does not hold generally.
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confirms the conclusion that smoking habits are transmitted by a mother to her offspring,

a conclusion that would also be reached using existing methods. Overall, the two applica-

tions showcase the usefulness of the AIV estimator as a tool for checking the robustness

of inferential conclusions in nonlinear models.

6.1 The effect of health insurance on hospital visits (Han and

Lee, 2019)

Health insurance coverage is considered an important factor for patients’ decisions to

use medical services. On the other hand, the decision to acquire health insurance is

endogenously determined by an individual’s health status, as well as socioeconomic char-

acteristics that are correlated with health outcomes. In this application, we investigate

how health insurance coverage affects an individual’s choice to visit a doctor. For this

purpose, we use a dataset constructed by Han and Lee (2019) which combines data from

the 2010 wave of the Medical Expenditure Panel Survey (MEPS) with information from

the National Compensation Survey published by the US Bureau of Labor Statistics. The

outcome of interest Yi is a binary variable indicating whether an individual visited a

doctor’s office in January 2010; the binary endogenous treatment Xend
i indicates whether

an individual has his/her own private insurance. Two instrumental variables are used

following Zimmer (2018): the number of employees in the firm at which the individual

works and a dummy variable that indicates whether a firm has multiple locations. These

variables reflect how big the firm is, and the underlying rationale for using these variables

as instruments is a that a bigger the firm is more likely it provides fringe benefits includ-

ing health insurance. The validity of these instruments relies on firm size not directly

affecting the decision to visit a doctor. Following Han and Lee (2019), we include a fur-

ther 23 exogenous variables in the model as additional controls, including demographic

characteristics as well as indicators of health status.

Table 3 provides estimates for the coefficient βend on the binary treatment using probit

MLE, 2SLS, the control function estimator of Rivers and Vuong (1988), the bivariate

probit estimator and the AIV estimator. We also report the associated standard errors

and the p-value of a two-sided t-test of no effect of health insurance coverage on doctor

visits (H0 : βend = 0). Remarkably, all methods deliver positive estimates for βend with

similar magnitudes, with the exception of MLE being roughly three times smaller than the

19



other methods considered.8 The test of regressor relevance based on bivariate probit leads

to rejection of the null hypothesis at all conventional levels of significance. On the other

hand, a test based on the AIV estimator does not reject the same hypothesis at the 1%

level of significance. The difference between p-values in this application is driven by the

varying magnitude of the standard errors associated with each method. Standard errors

associated with bivariate probit are likely to underestimate the sampling variability of the

estimator, as their validity relies on the assumptions of joint normality of the unobserved

disturbances and linearity of the first-stage equation. Our theory reassures us that the

AIV estimator provides inference that is robust to relaxing those assumptions in this

application.

6.2 The intergenerational transmission of smoking habits (Mu

and Zhang, 2018)

Vertical transmission within family is considered a key driver of the persistence of health

behaviours. The way in which harmful practices such as smoking are transmitted within

a family has therefore important implications for health policies. In this application we

apply our proposed methods to the study of the intergenerational transmission of smok-

ing habits using data from British Household Panel Survey. The outcome of interest Yi

is a binary variable indicating whether an adolescent smokes or not; the binary endoge-

nous treatment Xend
i indicates whether his/her single mother smokes or not. Following

Loureiro, Sanz-de Galdeano and Vuri (2010) and Mu and Zhang (2018), the instrument

used is an indicator for whether the teenagers’ grandfather had a high-skilled or low-skilled

occupation (including unemployed). The underlying rationale for using this variable as

an instrument is that the impact of parental socio-economic status on smoking behaviour

does not extend beyond one generation, after controlling for the relevant explanatory

variables. We include a further 5 exogenous variables in the model as additional controls:

the child’s age at interview year, the single mother’s age at interview year, an indicator

for whether the mother has higher education, an indicator for whether the mother is in

a high-skilled or low-skilled occupation, and the natural logarithm of monthly household

8As an estimator for the average partial effect of Xend rather than the coefficient βend, only the sign

of the 2SLS estimator can be compared to the other estimators. Even though we report results for the

control function estimator, its use is not recommended in this application as the endogenous regressor is

binary.
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income. Table 4 provides estimation results for the coefficient βend. All methods deliver

positive estimates for the coefficient βend, implying that a mother’s decision to smoke

increases the probability that her offspring chooses to be a smoker too. Similarly to the

previous empirical application, we find that all methods deliver estimates of similar mag-

nitude, with the exception of the MLE estimate being roughly a third of the bivariate

probit and AIV estimators. While the AIV estimator delivers a smaller estimate for βend

compared to bivariate probit, two-sided tests based on these two estimators both lead to

rejection of the hypothesis H0 : βend = 0 at all conventional levels of significance. As

a result, the AIV estimator provides evidence on the robustness of the conclusion that

smoking habits are transmitted between generations.

7 Conclusions

We have introduced the AIV estimator as a new and simple estimator in non-linear models

with endogenous covariates. The estimator translates the concept of excluded instruments

into a criterion function that demands the MLE of the coefficients of the instruments to be

close to zero when the instruments are included as covariates. We show that the resulting

AIV estimator is consistent if the endogenous regression coefficients are equal to zero. For

the case of a single endogenous regressor, we also demonstrate that the AIV estimator

is usually sign-consistent. These properties and its simplicity make the estimator useful

in practice, as illustrated by our empirical applications. In particular, the estimator is

complementary to the control function and the probit IV estimator, because it makes

weaker assumptions, but also delivers weaker consistency results.
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Table 3: Effect of Health Insurance on Doctor Visits

β̂end Std. Err. p-value

MLE .1796 .0404 < .0000

2SLS .1326 .0459 .0038

Control Function .5358 .1740 .0020

Bivariate Probit .4962 .1558 .0014

Auxiliary IV .5622 .2487 .0238

Sample size n = 7555. Data source: Han and Lee

(2019).

Table 4: Effect of mother’s smoking habits on child’s smoking habits

β̂end Std. Err. p-value

MLE .3305 .0347 < .0000

2SLS .3746 .1243 .0026

Control Function 1.089 .3047 .0004

Bivariate Probit 1.440 .1203 < .0000

Auxiliary IV 1.130 .4269 .0081

Sample size n = 7053. Data source: Mu and Zhang

(2018).
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Figure 2: Power function of two-sided test with continuous endogenous regressor, n = 7000
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Figure 3: Power function of two-sided test with discrete endogenous regressor, n = 7000
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A Appendix

A.1 Consistency result for generalized model

Here we present a consistency result for the generalized model of Assumption 4. We make

the following assumptions.

Assumption 5 (Exogeneity of X ′
i β0). Ui is independent of (Wi, X

′
iβ0, Zi).

Assumption 6 (Regularity conditions).

(i) The parameter sets B, C and A are compact. B contains β0, C contains 0 and A
contains α0 as interior points respectively.

(ii) For all possible outcomes y, the log-likelihood function ℓ
(
y
∣∣w, ω, α) is strictly con-

vex in (ω, α) and has Hessian with eigenvalues bounded away from zero, uniformly

over (w, ω, α). Furthermore, ℓ
(
Yi

∣∣Wi, X
′
iβ + Z ′

iγ, α
)
is three times continuously

differentiable in (β, γ, α) with derivatives that in expectation are bounded for all

(β, γ, α) ∈ B × C ×A.

(iii) Let L(β, γ, α) := E
[
ℓ
(
Yi

∣∣Wi, Xiβ + Ziγ, α
)]

denote the population log-likelihood

function. For all β ∈ B and η := (γ, α) ∈ C × A, we have

rank

{
∂2L(β, γ, α)

∂η∂η′

}
= kz + kα. (12)

For all β ∈ B and (0, α) ∈ C ×A, the matrix

A(β, 0, α) :=

∂2L(β,0,α)
∂γ∂β′

∂2L(β,0,α)
∂γ∂α′

∂2L(β,0,α)
∂α∂β′

∂2L(β,0,α)
∂α∂α′

 (13)

has full rank kx + kα.

(iv) The second derivatives of the sample log-likelihood

Ln(β, γ, α) =
1

n

n∑
i=1

ℓ (Yi | Wi, X
′
iβ + Z ′

iγ, α)

converge in probability to those of the population log-likelihood

L(β, γ, α) = E [ℓ (Yi | Wi, X
′
iβ + Z ′

iγ, α)]

uniformly over (β, γ, α) ∈ B × C ×A.
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(v) The symmetric matrix Ωn,β is a twice continuously differentiable function in β, and

there exists a constant c > 0 such that with probability approaching one we have

Ωn,β ≥ c for all β ∈ B. Furthermore, we have supβ∈B ∥Ωn,β − Ωβ∥ = op(1) for some

non-random symmetric matrix Ωβ which is positive-definite for all β ∈ B.

Assumptions 5 and 6 generalize Assumptions 2 and 3, respectively, to the case with

additional regressors Wi and parameters α. In particular, Assumption 6(iii) imposes

generalizations of the non-collinearity and relevance conditions for the instruments. Under

(12), condition (13) is equivalent to requiring

rank

{
∂2L(β, 0, α)

∂γ∂β′ −
[
∂2L(β, 0, α)

∂γ∂α′

] [
∂2L(β, 0, α)

∂α∂α′

]−1 [
∂2L(β, 0, α)

∂α∂β′

]}
= kx. (14)

Theorem 3. Let Assumption 4, 5, 6 hold. Then we have (β̂AIV, α̂AIV) = (β0, α0)+ oP (1),

as n → ∞.

A.2 Asymptotic normality result for generalized model

We now present the general result for the asymptotic distribution of the AIV estimator.

To do so, we introduce the following notation for the first and second derivatives of the

sample and population log-likelihood:

Lα(β, γ, α) = E
[
∂ℓ(Yi | Wi, X

′
iβ + Z ′

iγ, α)

∂α

]
Ln,α(β, γ, α) =

1

n

n∑
i=1

∂ℓ(Yi | Wi, X
′
iβ + Z ′

iγ, α)

∂α
,

Lαβ(β, γ, α) = E
[
∂ℓ(Yi | Wi, X

′
iβ + Z ′

iγ, α)

∂α ∂β′

]
Ln,αβ(β, γ, α) =

1

n

n∑
i=1

∂ℓ(Yi | Wi, X
′
iβ + Z ′

iγ, α)

∂α ∂β′ ,

where we will also use the short-hand Lαβ := Lαβ(β0, 0, α0). We also define the matrices

H̃ = Lγγ − Lγα L−1
αα Lαγ, G̃ = Lγβ − Lγα L−1

αα Lαβ,

and their sample analogues H̃n, G̃n based on Ln,αα,Ln,αβ, . . . in the natural way.

Theorem 4. Let Assumption 4, 5, 6 hold. Then we have

√
n (β̂AIV − β0) = −(G̃′ W̃ G̃)−1 G̃′ W̃

√
n
{
Ln,γ − Lγα L−1

αα Ln,α

}
+ op(1),

√
n (α̂AIV − α0) = −L−1

αα Lαβ

√
n (β̂AIV − β0)− L−1

αα

√
nLn,α + op(1)

= L−1
αα Lαβ (G̃

′ W̃ G̃)−1 G̃′ W̃
√
nLn,γ

−
{
L−1

αα Lαβ (G̃
′ W̃ G̃)−1 G̃′ W̃ LγαL−1

αα + L−1
αα

} √
nLn,α + op(1),

where W̃ := H̃−1Ωβ0 H̃
−1.
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The asymptotic representation in Theorem 4 can be used to show asymptotic normality

of the AIV estimator based on

√
n

Ln,γ

Ln,α

 d→ N


 0

0

 ,

 Σγ Σγα

Σ′
γα Σα




where Σα = Var
[
∂ℓ(Yi|Wi, X

′
iβ0, α0)

∂α

]
, Σγ = Var

[
Zi

∂ℓ(Yi |Wi,X
′
iβ0,α0)

∂ω

]
, and Σγα was defined in

the main text.

A.3 Local sign consistency: formal results

In this section, we formalize conditions under which the auxiliary IV estimator is sign-

consistent and we show that these conditions are verified in two benchmark models. For

this purpose we need some additional notation. Let γ(·, ·) : Rkx × Rkx → Rkz be the

function implicitly defined by the relationship

s(β, γ(β, β0), β0) = 0, s(β, γ, β0) := EPβ0

[
∂ℓ
(
Yi

∣∣X ′
iβ + Z ′

iγ
)

∂ω
Zi

]
,

where Pβ0 denotes the true data generating process parametrized by β0. Our previous

results show that γ̂(β) defined in (1) converges uniformly to γ(β, β0) under Pβ0 . Thus, we

can define the probability limit of our auxiliary IV estimator as a function of β0 as

β∗(β0) = argmin
β∈B

∥γ(β, β0)∥Ω(β,β0)
, (15)

where Ω(β, β0) is the probability limit of Ωn,β under Pβ0 . The next theorem provides a

sufficient condition for local sign consistency of the AIV estimator, which relies on some

additional regularity conditions.

Assumption 7 (Additional regularity conditions). There exists an open set around

βO = (βO
−k, 0) such that

(i) The function s(β, γ, β0) is three-times continuously differentiable with uniformly

bounded derivatives, and second derivatives

G(β, γ, β0) :=
∂2s(β, γ, β0)

∂γ∂β′ = EPβ0

[
ZiX

′
i

∂2ℓ
(
Yi

∣∣Xiβ + Ziγ
)

∂ω2

]
,

H(β, γ, β0) :=
∂2s(β, γ, β0)

∂γ∂β′ = EPβ0

[
ZiZ

′
i

∂2ℓ
(
Yi

∣∣Xiβ + Ziγ
)

∂ω2

]
,
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having singular values uniformly bounded away from 0.

(ii) The function Ω(β, β0) is positive-definite with eigenvalues uniformly bounded away

from 0 and uniformly bounded entries that have uniformly bounded continuous deriva-

tives up to second-order.

Assumption 7 imposes additional smoothness conditions on the population score func-

tion. These guarantee that the AIV estimator solves a convex optimization problem for

data generating process in a neighborhood of βO, when the optimization is made over a

suitably small set.

Theorem 5. Suppose that Assumptions 1,2, 3, and 7 hold. Then the auxiliary IV esti-

mator that solves (1) over a suitably small B∗ ⊆ B is locally sign consistent if

∂β∗,k(β0)

∂β0,k

∣∣∣∣
β0=βO

=

[(
G′

OH
−1
O ΩOH

−1
O GO

)−1
G′

OH
−1
O ΩOH

−1
O

∂s(βO, 0, βO)

∂β′
0

]
(kx,kx)

> 0,

where GO = G(βO, 0, βO), HO = H(βO, 0, βO) and ΩO = Ω(βO, βO).

In the following subsections, we use the above Lemma to verify local sign consistency

of the auxiliary IV estimator in the benchmark models of Examples 1 and 2.

A.3.1 Details for Example 1 (Control function)

We have

s(β, γ, β0) = EPβ0

[
(Yi − Φ(X ′

iβ + Z ′
iγ)) ·

ϕ(X ′
iβ + Z ′

iγ)

Φ(X ′
iβ + Z ′

iγ) · (1− Φ(X ′
iβ + Z ′

iγ))
Zi

]
= EPβ0

[{
FU |V (X

′β0 | Vi)− Φ(X ′
iβ + Z ′

iγ)
}
· ϕ(X ′

iβ + Z ′
iγ)

Φ(X ′
iβ + Z ′

iγ) · (1− Φ(X ′
iβ + Z ′

iγ))
Zi

]
,

since

EPβ0
[Yi | Xi, Zi] = FU |X,Z(X

′β0 | Xi, Zi)

= FU |V,Z(X
′β0 | Vi, Zi)

= FU |V (X
′β0 | Vi),

which then gives

∂s(βO, 0, βO)

∂β0

=
ϕ(βO

2 )

Φ(βO
2 ) · (1− Φ(βO

2 ))
· E
[
fU |V (β

O
2 |Vi)ZiX

′
i

]
.
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Having defined Z̃i := Ω
−1/2
O H−1

O Zi, we have by Theorem 5 that

dβ∗(β0)

dβ0

∣∣∣∣
β0=βO

=
1

ϕ(βO
2 )

·
[
E[XiZ̃

′
i] · E[Z̃ ′

i Xi]
]−1

E[XiZ̃
′
i] · E

[
fU |V (β

O
2 |Vi) Z̃iX

′
i

]
, (16)

It is useful to define Q :=
[
E[XiZ̃

′
i] · E[Z̃ ′

i Xi]
]
, for which we we have

Q−1 =
1

det(Q)
·

 Q22 −Q12

−Q12 Q11

 ,

Q11 =
kz∑
j=1

E[xi Z̃i,j]
2, Q12 =

kz∑
j=1

E[xi Z̃i,j] · E[Z̃i,j], Q22 =
kz∑
j=1

E[Z̃i,j]
2.

We also have

E[fU |V (β
O
2 |Vi)Zixi] = E[fU |V (β

O
2 |Vi)m(Zi)Z̃i] + E[fU |V (β

O
2 |Vi)ViZ̃i]

= E[fU |V (β
O
2 |Vi)] · E[m(Zi)Z̃i] + E[fU |V (β

O
2 |Vi)Vi] · E[Z̃i]

= E[fU |V (β
O
2 |Vi)] · E[xiZ̃i] + E[fU |V (β

O
2 |Vi)Vi] · E[Z̃i]

= ϕ(βO
2 ) · E[xiZ̃i] + E[fU |V (β

O
2 |Vi)Vi] · E[Z̃i],

where we have used the independence between Zi and Vi. Thus we can express the lower-

diagonal entry of (16)

∂β∗,2(β0)

∂β0,2

∣∣∣∣
β0=βO

=
[
Q−1E[XiZ̃

′
i]
]
(2,•)

· E
[
Z̃iXi

]
(•,2)

+
E[fU |V (β

O
2 |Vi)Vi]

ϕ(βO
2 )

·
[
Q−1E[XiZ̃

′
i]
]
(2,•)

· E[Z̃i].

The first term in the above expansion is equal to 1 and the second term is equal to 0 since

[
Q−1E[XiZ̃

′
i]
]
(2,•)

· E[Z̃i] =
1

det(Q)
·
[
−Q12 ·

( kz∑
j=1

E[Z̃i,j]
2

)
+Q11 ·

( kz∑
j=1

E[xiZ̃i,j] · E[Z̃i,j]

)]

=
1

det(Q)
·
[
−
( kz∑

ℓ=1

E[xi Z̃i,ℓ] · E[Z̃i,j]

)
·
( kz∑

j=1

E[Z̃i,j]
2

)
+

( kz∑
j=1

E[Z̃i,j]
2

)
·
( kz∑

ℓ=1

E[xiZ̃i,j] · E[Z̃i,j]

)]
= 0.

Hence we conclude that

∂β∗,2(β0)

∂β0,2

∣∣∣∣
β0=βO

= 1.

.
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A.3.2 Details for Example 2 (Generalized bivariate Probit)

Standard calculations (see Section 15.7.3 of Wooldridge, 2010) give:

EPβ0
[Yi | Xi, Zi] = E

[
FU |V (X

′
iβ0 | Vi) | Xi, Zi

]
=

Xi

FV (m(Zi))
·
∫ ∞

−m(Zi)

FU |V (X
′
iβ0 | Vi) · fV (v)dv +

1−Xi

1− FV (m(Zi))
·
∫ −m(Zi)

−∞
FU |V (X

′
iβ0 | Vi) · fV (v)dv,

which then gives

∂s(βO, 0, βO)

∂β0,2

=
ϕ(βO

2 )

Φ(βO
2 ) · (1− Φ(βO

2 ))
· E
[
Zi ·

∫ ∞

−m(Zi)

fU |V (β
O
2 | Vi) · fV (v)dv

]
.

Using Theorem 5 we obtain

∂β∗,2(β0)

∂β0,2

∣∣∣∣
β0=βO

=
1

ϕ(βO
2 )

· E[ZiXi]
−1
(2,•) · E

[
Zi ·

∫ ∞

−m(Zi)

fU |V (β
O
2 | Vi) · fV (v)dv

]

=
1

ϕ(βO
2 )

·
Cov

(
zi,
∫∞
−m(Zi)

fU |V (β
O
2 | Vi) · fV (v)dv

)
Cov (zi, FV (m(Zi))

.

The functions
∫∞
−Ziδ

fU |V (β
O
2 | Vi) · f(v)dv and FV (m(Zi)) are both monotonic increasing

(decreasing) in zi when m(Zi) is monotonic increasing (decreasing). As a result, the two

covariances in the above display have concordant signs and we conclude that the auxiliary

IV estimator is sign consistent.

A.4 Technical Lemmas

Lemma 2. Under the Assumptions of Theorem 5, there exists a convex and compact set

B∗ containing βO such that the optimization problem

argmin
β∈B∗

∥γ(β, β0)∥Ω(β,β0)

is convex for all β0 ∈ B∗.

A.5 Proofs

A.5.1 Proof of Lemma 1

Concavity of the log-likelihood, we have that γ̂(β) is uniquely characterized by the FOC

1

n

n∑
i=1

∂ℓ
(
Yi

∣∣X ′
iβ + Z ′

iγ, α
)

∂γ
Zi = 0
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By a mean-value expansion of the LHS in γ around γ = 0, the last display equation

becomes

γ̂(β) = −Hn(β, γ∗(β))
−1 ·

[
1

n

n∑
i=1

dℓ
(
Yi

∣∣X ′
iβ
)

dω
Zi

]
.

Plugging the above into the objective function ∥γ̂(β)∥Ωn,β
gives the desired equivalence.

A.5.2 Proof of Theorem 3

We begin by defining the population (large n limit) analog of (10) as

(γ(β), α(β)) = argmax
γ∈C, α∈A

L(β, γ, α),

β∗ =

{
β : β ∈ argmin

β∈B
∥γ(β)∥Ωn,β

}
,

α∗ = {α(β) : β ∈ β∗} ,

α†(β) = argmax
α∈A

L(β, 0, α),

α†
∗ =

{
α†(β) : β ∈ β∗} .

The proof consists of two parts. In Part I we show that β∗ = β0 and α∗ = α0. In Part II

we use the identification result of Part I to show consistency of (β̂AIV, α̂AIV).

Part I: Strict concavity of the expected log-likelihood in η (Assumption 6(ii)) guarantee

that (γ(β), α(β)) are uniquely defined by the FOC

∂L(β, η)
∂η

= 0,

for which we have γ(β0) = 0, α(β0) = α0 by Assumption 5. Suppose there exists β̌ ∈ β∗

with β̌ ̸= β0, so that

∂L(β0, 0, α(β0))

∂η
= 0,

∂L(β̌, 0, α(β̌))
∂η

= 0.

By a mean value expansion of ∂L(β,0,α)
∂η

in (β, α):

0 =
∂L(β̌, 0, α)

∂η
− ∂L(β0, 0, α(β̌))

∂η
=

∂2L(β̃,0,α̃)
∂γ∂β′

∂2L(β̃,0,α̃)
∂γ∂α′

∂2L(β̃,0,α̃)
∂α∂β′

∂2L(β̃,0,α̃)
∂α∂α′


︸ ︷︷ ︸

=A(β̃,0,α̃)

 β̌ − β0

α(β̌)− α0


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where (β̃, α̃) is an intermediate value between (β̌, α(β̌)) and (β0, α0). The matrix A(β̃, 0, α̃)

has full rank by Assumption 6 (iii), and therefore we conclude from the previous display

that

β̌ = β0, α(β̌) = α0.

By similar arguments we have α†(β0) = α0 and thus α†
∗ = α0.

Part II: show (β̂AIV, α̂AIV) = (β0, α0) + oP (1).

First define

η̂(β) = argmax
η∈E

n∑
i=1

ℓ
(
Yi

∣∣Wi, X
′
iβ + Z ′

iγ, α
)
,

η(β) = argmax
η∈E

E ℓ
(
Yi

∣∣Wi, X
′
iβ + Z ′

iγ, α
)
,

Then by Pollard’s convexity lemma we know that

sup
β∈B

sup
γ∈E

∣∣∣∣∣ 1n
n∑

i=1

ℓ
(
Yi

∣∣Wi, X
′
iβ + Z ′

iγ, α
)
− E ℓ

(
Yi

∣∣Wi, X
′
iβ + Z ′

iγ, α
)∣∣∣∣∣ = oP (1).

Having this, we satisfy all the assumptions of Lemma B.1 in Chernozhukov and Hansen

(2006), and therefore conclude

sup
β∈B

∥η̂(β)− η(β)∥ = oP (1).

It directly follows that the objective function ∥γ̂(β)∥Ωn,β
converges uniformly to ∥γ(β)∥Ω,

which together with the continuity of ∥γ(β)∥Ω and β0 being its unique minimizer over

the compact set B (Part I) ensures that standard conditions for consistency of extremum

estimators are satisfied (see, e.g., Theorem 2.1 in Newey and McFadden, 1994). We thus

conclude

β̂AIV = β0 + oP (1).

By analogous arguments we have sup(β,γ)∈(B,C) ∥α̂†(β, γ)−α†(β, γ)∥ = op(1). Furthermore,

consistency of β̂AIV and continuity of α†(β, γ) imply that α†(β̂AIV, 0) = α(β0)+oP (1). This,

together with the uniform consistency of α̂†(β, γ), guarantees that

α̂AIV = α0 + oP (1).
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A.5.3 Proof of Theorem 4

The proof is in three parts. First, we show that

∥γ̂(β)∥Ωn,β
= ∥s∗(β)∥Wn,β

, (17)

with

s∗(β) = Ln,γ(β, 0, α0)− Ln,γα(β, η∗(β))Ln,αα(β, η∗(β))
−1 Ln,α(β, 0, α0).

Wn,β = H̃n(β, η∗(β))
−1Ωn,β H̃n(β, η∗(β))

−1,

where η∗(β) = (γ∗(β), α∗(β)) lies on the line between (γ̂(β), α̂(β)) and (0, α0). In Part II,

we use the result from Part I to derive the asymptotic representation for β̂AIV. In Part

III, we use the result from Part II to derive the asymptotic representation for α̂AIV.

Part I: Strict concavity of the sample log-likelihood in η guarantees that η̂(β) =

(γ̂(β), α̂(β)) are uniquely defined by the FOC

Ln,η(β, η̂(β)) = 0.

A mean-value expansion the above around (γ, α) = (0, α0) gives

Ln,η(β, 0, α0) + Ln,ηη(β, η∗(β)) · η̂(β) = 0 =⇒ η̂(β) = −Ln,ηη(β, η∗(β))
−1 · Ln,η(β, 0, α0).

Using the partitioned inverse formula we obtain

γ̂(β) = −H̃n(β, η∗(β))
−1 · s∗(β)

Plugging the above into ∥γ̂(β)∥Ωn,(β,α)
gives (17).

Part II: Define

β̂† := β0 −
(
G̃′ W̃ G̃

)−1

G̃′ W̃ s(β), s(β) = Ln,γ(β, 0, α0)− Lγα L−1
αα Ln,α(β, 0, α0).

By definition, β̂ := β̂AIV minimizes s∗(β)
′ Wn,β s∗(β) . Therefore,

s∗(β̂)
′Wn,β̂ s∗(β̂) ≤ s∗(β̂

†)′ Wn,β̂† s∗(β̂
†). (18)

Uniform convergence of η̂(β) to η(β) (see proof of Theorem 3), along with consistency of

β̂, implies η∗(β̂) = (0, α0) + oP (1). This, together with uniform consistency of the second
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derivatives of Ln and Ωn,β implies that Wn,β̂ = W̃ + op(1). Uniform convergence of G̃n to

G̃ justifies the expansions

s∗(β̂) = s(β0) + G̃ (β̂ − β0) + oP

(
∥β̂ − β0∥

)
,

s∗(β̂
†) = s(β0) + G̃ (β̂† − β0) + oP

(
∥β̂† − β0∥

)
= s(β0) + G̃ (β̂† − β0) + oP

(
1√
n

)
,

where we have used that
√
n(β̂† − β0) = Op(1). Plugging the expansions into (18) and

using W̃n,β̂ = W̃ + oP (1) gives for the LHS[
s(β0) + G̃ (β̂ − β0) + oP

(
∥β̂ − β0∥

)]′
W̃
[
s(β0) + G̃ (β̂ − β0) + oP

(
∥β̂ − β0∥

)]
+R(β̂),

with

R(β̂) = oP (1) ·
[
s(β0)

′s(β0) + (β̂ − β0)
′G̃′G̃(β̂ − β0) + oP (∥β̂ − β0∥2)

+ 2 s(β0)
′G̃(β̂ − β0) + 2 s(β0)

′ oP

(
∥β̂ − β0∥

)
+ 2 (β̂ − β0) G̃

′G̃ oP

(
∥β̂ − β0∥

)]
= oP

(
∥β̂ − β0∥2 +

1√
n
∥β̂ − β0∥+

1

n

)
,

where we have used s(β0) = OP (1/
√
n). Similarly, for the RHS we have[

s(β0) + G̃ (β̂† − β0) + oP

(
∥β̂† − β0∥

)]′
W̃
[
s(β0) + G̃ (β̂† − β0) + oP

(
∥β̂† − β0∥

)]
+R(β̂†),

with

R(β̂†) = oP

(
∥β̂† − β0∥2 +

1√
n
∥β̂† − β0∥+

1

n

)
= oP

(
1

n

)
.

Combining the previous results with the inequality (18) gives[
s(β0) + G̃ (β̂ − β0)

]′
W̃
[
s(β0) + G̃ (β̂ − β0)

]
≤
[
s(β0) + G̃ (β̂† − β0)

]′
W̃
[
s(β0) + G̃ (β̂† − β0)

]
+ oP

(
∥β̂ − β0∥2 +

1√
n
∥β̂ − β0∥+

1

n

)
.

(19)

We now decompose s(β) = A1 + A2, where

A1 = G̃(G̃′W̃ G̃)−1G̃′W̃s(β), A2 =
[
I− G̃(G̃′W̃ G̃)−1G̃′W̃

]
s(β).
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Because G̃′W̃A2 = 0, we find that the contributions of A2 on both sides of the inequal-

ity (19) are identical and thus drop out. Also plugging in the definition of β̂†, this

inequality becomes(β̂ − β0) + (G̃′W̃ G̃)−1G̃′W̃s(β0)︸ ︷︷ ︸
:=L

′

G̃′W̃ G̃

×
[
(β̂ − β0) + (G̃′W̃ G̃)−1G̃′W̃s(β0)

]
≤ oP

(
∥β̂ − β0∥2 +

1√
n
∥β̂ − β0∥+

1

n

)
.

Because G̃′W̃ G̃ has full rank (since W̃ > 0 and rank(G̃) = kx) we have that

∥(β̂ − β0) + L∥2 ≤ oP (1) ·
(
∥β̂ − β0∥2 +

1√
n
∥β̂ − β0∥+

1

n

)
≤ oP (1) ·

(
∥β̂ − β0 + L∥2 + 1√

n
∥β̂ − β0 + L∥+ ∥L∥2 + 1√

n
∥L∥+ 1

n

)
≤ oP

(
1√
n

)
· ∥β̂ − β0 + L∥+ oP

(
1

n

)
,

where we have used L = OP (1/
√
n). Denoting ξn := oP

(
1√
n

)
· ∥β̂ − β0 + L∥ we can

re-write the above as (
∥β̂ − β0 + L∥ − ξn

)2
≤ ξ2n + oP

(
1

n

)
,

from which we conclude

√
n(β̂ − β0) =

√
nL+ oP (1).

Part III: Consider the decomposition

α̂†(β̂)− α0 = [α̂†(β̂)− α̂†(β0)] + [α̂†(β0)− α(β0)]. (20)

For the first term we consider the mean-value expansion:

α̂†(β̂)− α̂†(β0) =
dα̂†(β)

dβ

∣∣∣
β=β̃

· (β̂ − β0),

for β̃ between β0 and β̂. By the implicit function theorem, we have that in a neighbourhood

of (β0, α̂
†(β0))

∂α̂†(β)

∂β′ = −Ln,αα(β, 0, α̂
†(β))−1 · Ln,αβ(β, 0, α̂

†(β)).
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Using β̃ = β0 + op(1) and the usual uniform convergence arguments we obtain

α̂(β̂)− α̂(β0) = −L−1
αα Lαβ (β̂ − β0) + op

(
∥β̂ − β0∥

)
. (21)

Furthermore, classical likelihood results give

α̂†(β0)− α0 = −L−1
αα Ln,α + op(1/

√
n). (22)

Plugging (21) and (22) into (20) gives the asymptotic representation for α̂.

A.5.4 Proof of Theorem 5

The proof is made of three parts. In Part I we derive the formula for dβ∗(βO)
dβ0

. In Part II we

argue that dβ∗(β0)
dβ0

is bounded and continuous around βO. In Part III we finally show local

sign consistency of the AIV estimator defined as the minimizer of the objective function

over a suitably small closed ball around βO.

Part I: The function s(β, γ, β0) is thrice continuously differentiable, and thus by the

IFT the function γ(β, β0) is thrice-continuously differentiable in an open set containing

(β, β0) = (βO, βO) with first-derivatives equal to

∂γ(β, β0)

∂β′ = [H(β, γ(β, β0), β0)]
−1G(β, γ(β, β0), β0),

∂γ(β, β0)

∂β′
0

= − [H(β, γ(β, β0), β0)]
−1 · s(β, γ(β, β0), β0)

∂β′
0

.

Thrice-differentiability of γ(β, β0) together with Technical Lemma 2 implies that the limit

of the AIV estimator β∗(β0) is characterized around βO by the FOC of the minimisation

in (15):

Π(β, β0) := 2
∂γ(β, β0)

∂β′

′

Ω(β, β0)γ(β, β0) +
∑
i,j

γi(β, β0) · γj(β, β0) ·
∂Ωi,j(β, β0)

∂β
= 0,

(23)

when the estimator maximizes the objective function over the closed ball B∞,ϵ(β
O). We

now apply the IFT to (23), where thrice-differentiability of γ(β, β0) implies that β∗(β0) is

39



twice-differentiable with

dβ∗(β
O)

β′
0

= −
[
∂Π(βO, 0, βO)

∂β′

]−1
∂Π(βO, 0, βO)

∂β′
0

= −

[
∂γ(βO, βO)

∂β′

′

ΩO
∂γ(βO, βO)

∂β′

]−1
∂γ(βO, βO)

∂β′

′

ΩO
∂γ(βO, βO)

∂β′
0

=
(
G′

OH
−1
O ΩOH

−1
O GO

)−1
G′

OH
−1
O ΩOH

−1
O

∂s(βO, 0, βO)

∂β′
0

,

where we have used that γ(βO, βO) = 0.

Part II: Applying the IFT twice to (23) shows, after some simple but tedious algebra,

that d2β∗(β0)
(dβ0)2

is bounded and continuous in a neighborhood of βO when H,G and Ω are

bounded and have singular values bounded away from zero, uniformly in (β, γ, β0), which

we assume.

Part III: We consider the Taylor expansion of β∗,k(β0) with respect to β0,k around

βO:

β∗,k(β0) =
∂β∗,k(β

O)

∂β0,k

· β0,k +
∂2β∗,k(β̃)

(∂β0,k)2
· (β0,k)

2

where β̃ is an intermediate point between (βO
−k, β0,k) and (βO

−k, 0), and we have used that

βO
0,k = 0. Multiplying the above by β0,k we obtain

β∗,k(β0) · β0,k =
∂β∗,k(β

O)

∂β0,k

· β2
0,k +

∂2β∗,k(β̃)

(∂β0,k)2
· β3

0,k. (24)

Continuity of
∂2β∗,k(β0)

(∂β0,k)2
implies that for an arbitrary ε > 0 there exists a δε > 0 such that

for any |β0,k| < δε one has
∣∣∣∂2β∗,k(β0)

(∂β0,k)2

∣∣∣ < Cε :=
∣∣∣∂2β∗,k(β

O)

(∂β0,k)2

∣∣∣ + ε. Fixing such ε, and using

that
∂β∗,k(β

O)

∂β0,k
> 0, we have that β∗,k(β0) · β0,k > 0 for any β0,k small enough to satisfy the

requirements of the IFT in Part I and II and

0 < |β0,k| < min

{
δϵ, δε,

∂β∗,k(β
O)

∂β0,k

/Cε

}
.

A.5.5 Proof of Lemma 2

We want to find a convex set B∗ containing β
O for which the objective function ∥γ(β, β0)∥Ω(β,β0)

is convex in β ∈ B∗ for all β0 ∈ B∗. By the continuous twice-differentiability of γ(β, β0) and
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Ωβ,β0 wrt (β, β0), for every ϵ > 0 there exists a δϵ such that for ∥(β, β0)− (βO, βO)∥∞ ≤ δϵ

we have ∥∥∥∥∥∂ ∥γ(β, β0)∥Ω(β,β0)

∂β ∂β′ − ∂γ(βO, βO)

∂β

′

Ω(βO,βO)

∂γ(βO, βO)

∂β

∥∥∥∥∥ ≤ ϵ.

Denote Cλ the minimum eigenvalue of ∂γ(βO,βO)
∂β

′
Ω(βO,βO)

∂γ(βO,βO)
∂β

, which is bounded away

from 0 by Assumption 3. By Weyl’s Inequality we have∣∣∣∣∣λmin

(
∂ ∥γ(β, β0)∥Ω(β,β0)

∂β ∂β′

)
− Cλ

∣∣∣∣∣ ≤ ϵ

Choosing ϵ < Cλ ensures that objective function is convex with respect to β over the

convex set B∞,ϵ(β
O) for all β0 ∈ B∞,ϵ(β

O), where B∞,ϵ(β
O) denotes a closed ball around

βO with respect to the ℓ∞-norm.
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